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Abstract

Simultaneous solution algorithms for Eulerian–Eulerian gas–solid flow models are presented and their stability

analyzed.

The integration algorithms are based on dual-time stepping with fourth-order Runge–Kutta in pseudo-time. The

domain is solved point or plane wise. The discretization of the inviscid terms is based on a low-Mach limit of the

multi-phase preconditioned advection upstream splitting method (MP-AUSMP).

The numerical stability of the simultaneous solution algorithms is analyzed in 2D with the Fourier method. Stability

results are compared with the convergence behaviour of 3D riser simulations.

The impact of the grid aspect ratio, preconditioning, artificial dissipation, and the treatment of the source terms is

investigated. A particular advantage of the simultaneous solution algorithms is that they allow a fully implicit treatment

of the source terms which are of crucial importance for the Eulerian–Eulerian gas–solid flow models and their solution.

The numerical stability of the optimal simultaneous solution algorithm is analyzed for different solids volume frac-

tions and gas–solid slip velocities. Furthermore, the effect of the grid resolution on the convergence behaviour and the

simulation results is investigated.

Finally, simulations of the bottom zone of a pilot-scale riser with a side solids inlet are experimentally validated.
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Nomenclature

Notations

cg gas phase speed of sound [m s�1 ]

cm mixture speed of sound, i.e., the propagation speed of gas phase pressure waves in the gas–

solid mixture [m s�1 ]
~c numerical speed of sound [m s�1 ]

CP heat capacity at constant pressure [J kg�1 K�1]

dp particle diameter [m]

ds spatial dimension [m]

D drag source terms matrix
eg gas phase internal energy [J kg�1]

Eg gas phase total energy [J kg�1]

e restitution coefficient for particle–particle collisions [/]

ewall restitution coefficient for particle–wall collisions [/]

F flux
�g gravity [mr s

�2]

G gravity source terms matrix

Gs solids mass flux [kg m�2 s�1]
k turbulent energy gas phase [J kg�1]

P gas phase pressure [N m�2]

Ps solid phase pressure [N m�2]

qg/s kinetic energy gas/solid phase [m2 s�2]

Q vector of the conservative variables
�r position vector

s speed [m s�1]
��s viscous stress tensor [kg m�1 s�2]
t time [s]

T temperature [K]
�u local mean velocity gas phase [mr s

� 1]
�v local mean velocity solid phase [mr s

� 1]

W vector of the viscous variables

Greek notations

b drag coefficient [kg m�3 s�1]

C preconditioning matrix

c dissipation of kinetic fluctuation energy by inelastic particle–particle collisions ½kg m�1
r s�3�

dad artificial dissipation parameter

e dissipation of turbulent kinetic energy of the gas phase ½m2
r s

�3�
eg gas phase volume fraction ½m3

g m
�3
reactor�

�s solids volume fraction ½m3
s m

�3
reactor�

H granular temperature solid phase [J kg�1]

j conductivity kinetic fluctuation energy solid phase [kg m�1 s�1]

k eigenvalue

k conductivity [W m�1 K�1]

lg molecular viscosity gas phase [Pa s]
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ltg turbulent viscosity gas phase [Pa s]

ls shear viscosity solid phase [kg m�1 s�1]

x wave number

ns bulk viscosity solid phase [kg m�1 s�2]

qg gas phase density [kg m�3]
qm mixture density [kg m�3]

qsp solid phase density [kg m�3]

s pseudo-time [s]

/ scalar quantity

/ specularity factor for particle–wall collisions [/]

/(s) pre-exponential factor

W error

Subscript

a acoustic

c convective

d artificial dissipation

g gas phase

i of node i

i 0 of neighbouring node i 0

i00 of non-neighbouring node i00

ii 0 at the cell interface between nodes i and i 0

l plane

s solid phase

sp solid phase

v viscous

x x direction

y y direction

z z direction

Superscript

_ vector
¼ tensor

� perturbation

(a) acoustic

(c) convective

g gas phase
n pseudo-time step number

s solid phase

T transposed

(v) viscous

Other

Ææ mean

I Fourier symbol
|ii 0| distance between node i and neighbouring node i 0 [m]
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1. Introduction

Because of the large number of particles involved, an affordable approach to calculate industrial gas–

solid flows is the Eulerian–Eulerian approach. The gas and the solid phase are described as fully inter-

penetrating continua [2]. The resulting set of partial differential equations is difficult to solve, due to the
disperse characteristic speeds and due to the action of drag and gravity, appearing as source terms in

the equations.

Most two-phase flow research groups use a sequential solver, also called pressure based algorithm

[1,8,16,25], originally extended to multi-phase flows by Harlow and Amsden [14].

Simultaneous or density based solution algorithms were for single phase flow originally developed for

high-Mach applications. The introduction of preconditioning [29,34], made simultaneous solvers also effi-

cient for low-Mach single phase flow calculations.

De Wilde et al. [4] developed a semi-implicit point wise simultaneous solution algorithm for steady and
unsteady gas–solid flows, with a dual-time stepping technique and preconditioning in pseudo-time. The dis-

cretization was based on an extension of the preconditioned advection upstream splitting method

(AUSMP) [17,18] to multi-phase flows [4,9,10,19,21]. The semi-implicit point solver was seen to be stable

in 3D calculations of gas–solid flows on low aspect ratio grids [4,5]. On higher grid aspect ratio grids, how-

ever, convergence was seen to slow down because stiffness is introduced by the numerically anisotropic

behaviour of the diffusive and the acoustic terms [32].

The purpose of this paper is to present a semi-implicit plane solver and analyze the stability and conver-

gence behaviour of the semi-implicit point and plane wise simultaneous solution algorithms for gas–solid
flow at both low and high aspect ratio grids. The numerical schemes are analyzed in 2D with the Fourier

method. The convergence behaviour is illustrated with 3D calculations of low speed developing gas–solid

flow in a riser.

A low-Mach limit of the AUSM scheme is presented and studied. The role of the preconditioner, the

discretization and the treatment of the source terms are discussed. The influence of the solids volume frac-

tion and the gas–solid slip velocity on the numerical stability is investigated. A grid independency study is

carried out, allowing to investigate the effect of grid refinement on the numerical solution and on the con-

vergence behaviour of the simultaneous solution algorithms. Finally, the gas–solid flow model is experi-
mentally validated.
2. Gas–solid flow model

The Eulerian–Eulerian approach is used. Table 1 summarizes the transport equations involved. The

basic equation set expresses the conservation of mass, momentum and energy for each phase. For the

solid phase, the transport equations are obtained via the kinetic theory of granular flow (KTGF) [12],
requiring the solution of an extra transport equation for the granular temperature – a measure for the

fluctuating motion of the solid phase on the single solid particle level. The KTGF is analogous to the

kinetic theory of gasses but allows non-elastic particle–particle collisions [15,20]. The latter result in dis-

sipation of granular temperature. Because the gas and solid phase temperature (6¼granular temperature)

are assumed to be equal, a solid phase total energy equation is not taken into account. In the present

work, the commonly used model B [6,12] is applied, locating the gas phase pressure gradient entirely in

the gas phase.

Because the computationally affordable mesh in gas–solid flow calculations is usually too coarse to
explicitly calculate the turbulent motion, Reynolds-averaged equations are used and the turbulence is

accounted for via a turbulence model. The effect of gas phase turbulence is taken into account via a



Table 1

Conservation equations

Gas phase total mass balance

o
ot egqg

� �
þ o

o�r � egqg�u
� �

¼ 0 ð1Þ
Solid phase total mass balance

o
ot esqsp

� �
þ o

o�r � esqsp�v
� �

¼ 0 ð2Þ
Momentum conservation gas phase

o
ot egqg�u
� �

þ o
o�r � egqg�u�u
� �

¼ � o
o�r P þ 2

3
qgk

� �
� o

o�r � egsg
� �

� b �u� �vð Þ þ egqg�g ð3Þ
where

sg ¼ � ng � 2
3
lg

� �
o
o�r � �u
� ���I þ lg þ lt

g

� �
o
o�r �u
� �

þ o
o�r �u
� �T� �h i

ð4Þ
Momentum conservation solid phase

o
ot esqsp�v
� �

þ o
o�r � esqsp�v�v
� �

¼ � o
o�r P s � o

o�r � esss
� �

þ b �u� �vð Þ þ esqsp�g ð5Þ
where

ss ¼ � ns � 2
3
ls

� �
o
o�r � �v
� ���I þ lsð Þ o

o�r�v
� �

þ o
o�r�v
� �T� �h i

ð6Þ
Total energy conservation equation gas phase

o

ot
egqg eg þ k þ qg

� �� �
þ o

o�r
� egqg�u eg þ k þ qg

� �� �
� o

o�r
� eg kþ ktð Þ oT

o�r

� �

¼ � o

o�r
� P þ 2

3
qgk

� �
�u

� �
� o

o�r
� egsg � �u
� �

� b
2

�u � �uð Þ � �v � �vð Þð Þ þ egqg�g � �u ð7Þ

Turbulence equations gas phase

k-equation

o
ot egqgk
� �

þ o
o�r � egqg�uk
� �

¼ o
o�r � eg

lgþltg
rk

ok
o�r

� �
þ eglt

g
o
o�r �u
� �

þ o
o�r �u
� �Th ih i

: o
o�r �u
� �

� egqge ð8Þ
e-equation

o
ot egqge
� �

þ o
o�r � egqg�ue
� �

¼ o
o�r � eg

lgþltg
re

oe
o�r

� �
þ C1e

e
k eglt

g
o
o�r �u
� �

þ o
o�r �u
� �Th i

: o
o�r �u
� �h i

� C2eegqg
e2

k ð9Þ
Transport equation for the kinetic fluctuation energy of the solid phase

3
2

o
ot esqspH
� �

þ o
o�r � esqsp�vH
� �� �

¼ o
o�r � esj o

o�rH
� �

� P s
��I þ esss

� �
: o

o�r�v
� �

� c ð10Þ
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high-Reynolds k–e model, adapted for gas–solid interactions [4]. The solid phase Reynolds-stress terms

related to meso-scale fluctuations (e.g., clusters) [1,35] are not taken into account, as no reliable solid phase

turbulence model is available yet. For the numerical investigation in the present work, the latter is of minor

importance.
Constitutive equations for the solid phase physical properties are derived via the KTGF and adopted

from [20].

At solid bounding walls, the no-slip condition is applied for the gas phase, whereas slip is allowed for the

solid phase. The high-Reynolds k–e model used in the bulk flow for the gas phase [11] is not valid in the

immediate vicinity of the wall [26]. Therefore, use is made of wall functions based on the well-known log-

arithmic law [15]. No accurate model to account for the presence of solid particles in the wall functions is

available yet. For the solid phase, the values of the specific shear stress and the flux of pseudo-thermal
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energy to the wall are calculated as in [27]. With respect to total energy transport, the solid wall is assumed

to be a perfect insulator.

More details on the constitutive equations and the boundary conditions are found in [4].

The inviscid gas–solid flow model equations are not necessarily well-posed [12,28]. However, it was

shown that the presence of non-zero viscous terms in the gas–solid flow model (Table 1), no matter how
small, results in a well-posed system (see, e.g., [28]).
3. Integration scheme

A simultaneous solution algorithm is used [4], in contrast to the for multi-phase flows frequently used

sequential solvers [14,22–24]. Thus, the pressure–velocity correction loop is eliminated.

The equation set (1)–(10) (Table 1) is written in matrix formulation as:
oQ
ot

¼ spatial termsþ source terms ð11Þ
with Q the vector of the conservative variables.

For the integration, a dual-time stepping technique is used. A numerical stepper, the pseudo-time s, is
introduced for the solution of the non-steady-state problem:
oQ
os

þ oQ
ot

¼ spatial termsþ source terms: ð12Þ
An iteration loop is set up in pseudo-time. To further increase the numerical stability, a fourth-order

Runge–Kutta scheme is used in the pseudo-time stepping [3,4,32,33]. At convergence, the pseudo-time step

term vanishes.

The equations are linearized and solved for the viscous variables, i.e., es, P, vx, vy, vz, ux, uy, uz, T, H, k,

and e, instead of the conservative variables used in previous work [3,4]. This drastically simplifies the lin-

earization of the acoustic and the viscous fluxes. Eq. (12) is reformulated as:
oQ
oW

� oW
os

þ oQ
oW

� oW
ot

¼ spatial termsþ source terms ð13Þ
with W the vector of the viscous variables.
3.1. Preconditioning

The integration scheme suffers from stiffness when the Mach-number is low and a partially explicit

approach is taken. A fully implicit approach is computationally expensive. A cheaper solution to reduce

the stiffness in the stream wise direction is to apply local preconditioning [27]. Preconditioning rescales

the eigenvalues of the set of equations (Table 1 and Eq. (13)) so that they become all of the same order
of magnitude. The eigenvalues correspond physically to the characteristic speeds. To perform a proper

rescaling of the system, the knowledge of the characteristic speeds of the model, in particular the mixture

speed of sound cm, is essential. Experimental observations by van der Schaaf et al. [30] show a remarkable

gradual decrease of the mixture speed of sound with increasing solid volume fraction. Furthermore, the

mixture speed of sound was observed to be frequency dependent [13]. Gregor and Rumpf [13] have shown

via an eigenvalue analysis that the Eulerian–Eulerian gas–solid flow models correctly capture the complex
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mixture speed of sound behaviour. Furthermore, these authors present a general mixture speed of sound

equation for gas–solid flows.

The preconditioner C of Weiss and Smith [34], extended to gas–solid flows by De Wilde et al. [4], is

further generalized to account for a more general equation for the mixture speed of sound
C ¼

qsp 0 0 0 0 0 0 0 0 0 0 0

�qg egT 1 0 0 0 0 0 0 egK2 0 0 0

qspvx 0 esqsp 0 0 0 0 0 0 0 0 0

qspvy 0 0 esqsp 0 0 0 0 0 0 0 0

qspvz 0 0 0 esqsp 0 0 0 0 0 0 0

�qgux eguxT 1 0 0 0 egqg 0 0 eguxK2 0 0 0

�qguy eguyT 1 0 0 0 0 egqg 0 eguyK2 0 0 0

�qguz eguzT 1 0 0 0 0 0 egqg eguzK2 0 0 0

�qgEg egðð½Eg þ P
qg
�T 1Þ � 1Þ 0 0 0 egqgux egqguy egqguz C1 0 egqg 0

3qspH

2
0 0 0 0 0 0 0 0

3esqsp
2

0 0

�qgk egkT 1 0 0 0 0 0 0 egkK2 0 egqg 0

�qge egeT 1 0 0 0 0 0 0 egeK2 0 0 egqg

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

ð14Þ
where
K2 ¼
oqg

oT

				
P

¼ �
qg

T
; ð15Þ

C1 ¼ eg Eg þ
P
qg

" #
K2

 !
þ ðqgCP Þ

 !
; ð16Þ

T 1 ¼
1

u2ref

� �
þ 1

CP � T

� �� �
; ð17Þ
with
uref ¼ cg if j �u j> cm ð18Þ
and if j�uj < cm:
uref ¼ �uj j � ðcg=cmÞ þ
2ðlg þ ltur

g Þ a
Dx þ a

Dy þ 1
Dz

� �
qg

ð19Þ
with a = 1 for the semi-implicit point solver and a = 0 for the semi-implicit plane solver (explained further

in this paper) and with cg the gas phase speed of sound and cm the mixture speed of sound, e.g., [13].

The preconditioner depends on the mixture speed of sound cm. As will be demonstrated, the damping
characteristics and the convergence behaviour of the preconditioned dual-time stepping integration scheme

strongly depend on a proper rescaling of the eigenvalues of the set of equations (Table 1 and Eq. (13)) by

the preconditioner. If the preconditioner is properly scaled, the pseudo-time step can be scaled according to

all characteristic speeds and convergence is fast. On the other hand, if the preconditioner is not properly

scaled, the pseudo-time step is to be scaled according to the largest characteristic speed and convergence

is poor.
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The optimal formulation for the mixture speed of sound to be used in Eq. (19) requires some further

research.

Because the pseudo-time derivative term is pre-multiplied with the preconditioner,
C
oW
os

þ oQ
oW

� oW
ot

¼ spatial termsþ source terms ð20Þ
the preconditioner affects the convergence behaviour only and not the solution.

3.2. Discretization

First-order backward discretization in physical and pseudo-time is performed:
Dt
Ds

Cþ oQ
oW

� �ðnÞ
 !

� ðW ðtþDtÞðnþ1Þ

i � W ðtþDtÞðnÞ
i Þ ¼ ð�Q tþDtð Þ nð Þ

i þ QðtÞ
i Þ þ ðDt � spatial termsÞðnÞ

þ ðDt � source termsÞðnÞ: ð21Þ
Eq. (21) is written for node i and taking a fully explicit approach for the spatial and source terms. The
iteration number n is directly related to the pseudo-time step Ds.

Applying the finite volume technique results in a flux formulation of the spatial terms [4]. The discret-

ization of the latter depends on the nature of the fluxes.

The inviscid fluxes are treated following an extension of the advection upstream splitting method

(AUSM) [17,18] from single phase to multiphase flows [4,9,10,19,21]. In the present work, a simplified

AUSM scheme, based on the low-Mach limit of the original AUSM-scheme, is introduced.

AUSM is based on a separate treatment of the convective and acoustic terms for each phase. Convective

flux terms are treated upwind following the value of the advective velocity at the cell interface:
/ðcÞ
g=s � �n

j k
ii0
¼ /g=s

i=i0 ðsg=s � �nÞii0 ¼ /g=s

i=i0 s
g=s
nii0

ð22Þ
with
/i=i0 ¼
/i

/i0
if

snii0 P 0;

snii0 < 0;
ð23Þ
where snii0 being the component of the cell interface velocity normal to the cell interface.

In the original AUSM scheme, the velocity s at the cell interface ii 0 combines information from wave

speeds travelling towards the cell interface from the adjacent cells [4,17]. In the low-Mach limit this formu-

lation reduces to a central scheme:
sii0 ¼
si þ si0

2
: ð24Þ
The acoustic flux terms are governed by the acoustic wave speeds and in the low-Mach limit the pressure

splitting reduces to a central scheme:
P ii0 ¼
P i þ P i0

2
: ð25Þ
To improve the pressure–velocity coupling and the numerical stability, artificial dissipation is to be added

[4,18]. Following [33], artificial dissipation should be added to the mass flux in all equations. Artificial

dissipation is added to all gas phase equations in the present work, in contrast to previous work [4] where
artificial dissipation is only added to the gas phase mass and total energy equations. No artificial dissipation

is added to the solid phase equations, as the gas phase pressure gradient is distributed entirely over the gas

phase (model B) [12].
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For the gas phase mass balance Eq. (1), the artificial dissipation term at each cell interface ii 0 is propor-

tional to
dad
ðP i0 � P iÞ

bn
ð26Þ
in which dad is the artificial dissipation parameter with a typical value of about 0.5;
bn ¼ umaxj j þ
2ðlgii0

þ ltur
gii0
Þ

qgii0
� ii0j j ð27Þ
with: umaxj j the maximum convective speed in the flow field.

bn (Eq. (27)) consists of a convective and viscous contribution, respectively. In Eq. (27), |ii 0| is the dis-

tance between node i and neighbouring node i 0.

For the other equations, the mass balance artificial dissipation term is to be multiplied with the trans-
ported viscous variable. Remark that Eq. (26) contains no pressure gradient, but a pressure difference.

As a result, for infinitely fine meshes, the artificial dissipation terms vanish.

The viscous fluxes are calculated following a central scheme [3].

Applying the different splitting techniques, the spatial terms in Eq. (21) can be formally written in terms

of contributions of node i, neighbouring nodes i 0 and non-neighbouring nodes i00:
Dt
Ds

Cþ oQ
oW

� �ðnÞ
 !

� ðW ðtþDtÞðnþ1Þ

i � W ðtþDtÞðnÞ
i Þ ¼ ð�QðtþDtÞðnÞ

i þ QðtÞ
i Þ þ ðDt � F ði; i0; i00ÞÞðnÞ

þ ðDt � source termsÞðnÞ; ð28Þ
where F is a summation of convective, acoustic and viscous fluxes:
F ¼ F ðcÞ þ F ðaÞ þ F ðvÞ: ð29Þ

An explicit, semi-implicit, or fully implicit treatment of some or all of the spatial terms can be chosen. An

implicit treatment with respect to information from node i requires the calculation of the Jacobian of the

flux vector with respect to the variables of node i:
F ði; i0; i00Þði:nþ1Þ ¼ F ði; i0; i00Þði:nÞ þ oF ði; i0; i00Þ
oW i

� �ðnÞ

� ðW ðnþ1Þ
i � W ðnÞ

i Þ: ð30Þ
An implicit treatment with respect to node i and some or all of the neighbouring nodes i 0 also requires

the calculation of the Jacobian of the flux vector with respect to the variables of neighbouring nodes i 0 and

results in:
F ði; i0; i00Þði;i
0 :nþ1Þ ¼ F ði; i0; i00Þði;i

0:nÞ þ oF ði; i0; i00Þ
oW i

� �ðnÞ

� ðW ðnþ1Þ
i � W ðnÞ

i Þ

þ oF ði; i0; i00Þ
oW i0

� �ðnÞ

� ðW ðnþ1Þ
i0 � W ðnÞ

i0 Þ: ð31Þ
The last term in Eq. (30) or the two last terms in Eq. (31) are transferred to the left-hand side of Eq. (28).

In case Eq. (31) is used, Eq. (28) is transformed into:
Dt
Ds

Cþ oQ
oW

� �ðnÞ

� oF ði; i0; i00Þ
oW i

� �ðnÞ
" #

� ðW ðtþDtÞðnþ1Þ

i �W ðtþDtÞðnÞ
i Þ � oF ði; i0; i00Þ

oW i0

� �ðnÞ

� ðW ðtþDtÞðnþ1Þ

i0 �W ðtþDtÞðnÞ
i0 Þ

¼ ð�Q tþDtð ÞðnÞ
i þQðtÞ

i Þ þ ðDt � F i; i0; i00ð ÞðnÞÞ þ ðDt � source termsÞðnÞ: ð32Þ
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Eq. (32) can be rewritten as:
AðnÞ
i;i � DW i � A nð Þ

i;i0 � DW i0 ¼ Q tð Þ
i � Q tþDtð ÞðnÞ

i

� �
þ Dt � F i; i0; i00ð Þ nð Þ
� �

þ Dt � source termsð ÞðnÞ ð33Þ
introducing the square matrices AðnÞ
i;i and AðnÞ

i;i0 with a dimension equal to the number of equations. These

matrices are used in the general matrix formulation for all nodes presented next.

3.3. Treatment of the source terms

Source terms occur in the conservation equations (Table 1) as a result of gravity and gas–solid interac-
tions. Furthermore, the granular temperature equation and the turbulence transport equations contain dis-

sipation and production terms [7].

Following [7], DeWilde et al. [4] split all source terms into a positive and a negative part. Only the negative

part is treated implicitly. In the present work, a fully explicit and a fully implicit treatment of the gravity and

drag source terms are also tested to investigate the effect on the numerical stability. The possibility of a fully

implicit treatment of the source terms is a particular advantage of the simultaneous solution algorithms.With

a sequential solution algorithm, only a semi-implicit treatment with respect to one of the variables is possible.

Remark that for the turbulence source terms, the negative part only is treated implicitly. Such an ap-
proach was shown to be optimal [7] and the treatment of the turbulence source terms is adopted from

[7] and is not further investigated in the present work. The drag and gravity source terms are focused on.

For a fully implicit treatment of the source terms the source terms K are, after linearization, taken into

account as:
K nþ1ð Þ ¼ KðnÞ þ oK
oW

� �ðnÞ

� W nþ1ð Þ � W ðnÞ� �
¼ KðnÞ þ oK

oW

� �ðnÞ

� DW : ð34Þ
This formulation is included in Eq. (32).

3.4. Simultaneous solution algorithms: point and plane solver

Eq. (33) written down for all nodes i can be expressed in matrix formulation, for example:
A1;1 . . . 0 . . . A1;i0
1

. . . 0 . . . A1;i0
2

. . .

. . . A2;2 . . . 0 . . . A2;i0
1

A2;i0
2

. . .

. .
.

Ai;i0
1

. . . 0 . . . Ai;i0
2

Ai;i . . .

. .
.

. . . Ann;i0
1

. . . 0 . . . Ann;nn

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

�

DW 1

DW 2

..

.

DW i

..

.

DW nn

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼

B1

B2

..

.

Bi

..

.

Bnn

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð35Þ
or
A � DW ¼ B; ð36Þ

where DWi and Bi are vectors of dimension equal to the number of equations, as defined by Eqs. (32) and

(33), and nn is the number of nodes.

Matrix A in Eqs. (35) and (36) is sparse. In case an explicit or a semi-implicit point solver is used, only

the diagonal elements Ai, i will contain non-zero elements. In that case, the equations can be solved point

wise with the Jacobi method [4]. If a semi-implicit plane solver is applied, the off-diagonal elements Ai;i0 cor-

responding to the interaction terms of a node i with the neighbouring nodes i 0 in the considered plane will
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contain non-zero elements as well. This requires the simultaneous solution of all nodes in the plane. Hence,

matrix A (Eqs. (35) and (36)) can be rewritten in a block structure. The nodes in a block are solved simul-

taneously, whereas the different blocks can be solved independently. Remark that a 2D plane in a 3D sim-

ulation corresponds to a 1D line in a 2D simulation.

Most risers have a high aspect ratio, i.e., the diameter of a riser is much smaller than its length. Therefore,
for the numerical solution, high grid aspect ratios are commonly used, with the smallest distance between the

nodes in the directions perpendicular to the axis of the riser, i.e., perpendicular to the main flow direction.

Hence, numerical stability restrictions are the most strict in the directions perpendicular to the axis of the ri-

ser. By choosing the cross sections perpendicular to the axis of the riser to be solved plane wise, i.e., by han-

dling the interactions between all nodes in each of these cross sections of the riser in an implicit way and

solving these nodes simultaneously, the strict stability restrictions in these plane directions are eliminated.

For a semi-implicit point solver, the pseudo-time step introduced in Eq. (12) is restricted following the

3D Courant–Friedrichs–Lewy (CFL) condition:
ux þ ~c
Dx

þ uy þ ~c
Dy

þ uz þ ~c
Dz

� �
� Ds ¼ CFL � 1; ð37Þ
where ~c is the numerical speed of sound as obtained by the use of preconditioning (Eqs. (14)–(20)).

For a semi-implicit plane solver, with the plane in the x and y directions, the pseudo-time step is only

restricted by
uz þ ~c
Dz

� �
� Ds ¼ CFL � 1; ð38Þ
z being the direction of the riser axis.

Thus, a plane solver allows the use of a much larger pseudo-time step for the calculations and, as a result,

reduces the number of iterations. The same argumentation holds for the Neumann condition for viscous

effects [32].

The equation set corresponding to a plane
Al � DW l ¼ Bl ð39Þ

is solved by a sparse direct solver. Interactions between planes and non-linearities are solved during pseudo-

time stepping.
4. Stability analysis of the numerical scheme

The presented numerical schemes are analyzed using a Fourier analysis [32]. A 2D rectangular grid with-

out stretching and with periodical boundary conditions is assumed. The grid and the related notations used

are explained in Fig. 1.

Assuming a positive value for the x and y components of the velocities, the equations for the semi-

implicit point solver are given by
C
Ds

þAc þBc þAa þBa þ 2 Av þBvð Þ þ 2 Ad þBdð Þ
� �

W nþ1ð Þ �W ðnÞ� �
�Aa

W ðnÞ
iþ1;j �W nð Þ

i�1;j

� �
2

�Ba

W nð Þ
i;jþ1 �W ðnÞ

i;j�1

� �
2

�Ac W ðnÞ
i;j �W ðnÞ

i�1;j

� �
�Bc W ðnÞ

i;j �W ðnÞ
i;j�1

� �
� Av þAdð Þ W nð Þ

i�1;j � 2W ðnÞ
i;j þW ðnÞ

iþ1;j

� �
� Bv þBdð Þ W nð Þ

i;j�1 � 2W ðnÞ
i;j þW ðnÞ

i;jþ1

� �
� fv W ðnÞ

i�1;j�1;W
ðnÞ
i�1;jþ1;W

ðnÞ
iþ1;j�1;W

ðnÞ
iþ1;jþ1

� �
¼ DþG:

ð40Þ
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For the definition of Ac, Bc, Aa, Ba, Av, Bv, Ad, and Bd, reference is made to Appendix A. The source terms

consist of the drag (D) and gravity (G). The treatment of the turbulence source terms and the effect on the

numerical stability was analyzed by [7] and the turbulence source terms are not further considered for the

stability analysis in this paper.

Assuming a positive value for the x and y components of the velocities, the equations for the semi-
implicit plane solver are given by � � � �
C
Ds

þ Ac þ Aa þ 2Av þ 2Ad

� �
W nþ1ð Þ � W ðnÞ� �

� Aa

W ðnÞ
iþ1;j � W ðnÞ

i�1;j

2
� Ba

W nþ1ð Þ
i;jþ1 � W nþ1ð Þ

i;j�1

2

� Ac W ðnÞ
i;j � W nð Þ

i�1;j

� �
� Bc W nþ1ð Þ

i;j � W nþ1ð Þ
i;j�1

� �
� Av þ Adð Þ W ðnÞ

i�1;j � 2W nð Þ
i;j þ W ðnÞ

iþ1;j

� �
� Bv þ Bdð Þ W nþ1ð Þ

i;j�1 � 2W nþ1ð Þ
i;j þ W nþ1ð Þ

i;jþ1

� �
� fv W ðnÞ

i�1;j�1;W
ðnÞ
i�1;jþ1;W

ðnÞ
iþ1;j�1;W

ðnÞ
iþ1;jþ1

� �
¼ Dþ G:

ð41Þ

For the definition of Ac, Bc, Aa, Ba, Av, Bv, Ad, and Bd, reference is made to Appendix A.

4.1. Fourier analysis

In general, the state of variables Q can be written as the sum of the solution ÆQæ and an error W which is

function of the pseudo time s:
Qðx; y; sÞ ¼ Qh iðx; yÞ þWðx; y; sÞ: ð42Þ

The error can be written as a sum of Fourier waves. The Fourier component, with wave number xx in the x

direction and wave number xy in the y direction, is written as:
Wxx;xy x; y; sð Þ ¼ / sð Þej xxxþxy yð Þ; ð43Þ
where j represents the imaginary unit. Substitution of Eq. (43) into the set of equations describing the dis-

cretised hydrodynamic model (Eqs. (1)–(10)) results in a set of equations for the error. The linear terms are

transferred into identical expressions. The non-linear terms need some explanation.
As an example, the error due to the quadratic term ou2 /ox is developed, with u one of the components of

the gas phase velocity vector �u. Using the upwind formulation (Eqs. (22) and (23)) and assuming a positive

velocity component u, the first-order discretization of this term is written as:
1

dx
uiþ1=2ui � ui�1=2ui�1

� �
: ð44Þ
For the non-linear terms, a uniform flow field is assumed. Then u can be written as
uk ¼ uh i þWk; ð45Þ

where k stands for any subscript and Ææ indicates the mean constant value in the flow field of, in this case, a

component of the gas phase velocity. Using this expression, Eq. (44) becomes:
1

dx
uh i Wiþ1=2 �Wi�1=2 þWi �Wi�1 þO W2

� �� �
: ð46Þ
By introducing Eq. (43), the coefficient of the term ejðxxxþxy yÞ can be written as:
/ sð Þ uh i ce hx; dxð Þ þ up hx; dxð Þð Þ; ð47Þ

where ce() results from the central discretization scheme (Eq. (24)):
ceðh; dsÞ ¼ 0:5 � ej�h � e�j�h� �
� ds�1 ð48Þ
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and up() results from the upwind discretization scheme. For the first-order upwind scheme (Eq. (23)):
up h;dsð Þ ¼ 1� e�j�h� �
� ds�1; ð49Þ
with h = x Æ ds, x being the wave number and ds a spatial dimension.

Similar equations hold if the velocity component u is negative.

An analogous approach is taken for combination terms. As an example, when using the upwind formu-

lation Eqs. (22) and (23) and assuming positive v, o(es Æ qsp Æ v)/ox becomes:
1

dx
esiqspi

viþ1=2 � esi�1
qspi�1

vi�1=2

� �
: ð50Þ
Assuming a uniform flow field for the non-linear terms and introducing a perturbation results in the fol-

lowing expression for the coefficient of the term ej xxxþxy yð Þ:

/ tð Þ es � qsp


 �
� ce hx; dxð Þ þ qsp � v


 �
� up hx; dxð Þ

� �
; ð51Þ
where Ææ again indicates the mean constant value of the flow field.

For completeness, vi(h,ds) and vi2(h, hb,ds1,ds2) are given, because they are needed for the viscous con-

tributions and the artificial dissipation terms:
vi h; dsð Þ ¼ �e�j�h þ 2
� �

� ej�h
� �

� ds�2 ð52Þ
and
vi2ðh; hb; ds1; ds2Þ ¼ �e�j�h� �
þ ej�hb þ e�j�hb � ej�h

� �
� 0:25 � ds1�1 � ds2�1 ð53Þ
with ds1 and ds2 two spatial dimensions.

Neglecting higher-order terms in the error component, the following set of algebraic equations for the

error has to be solved for each stage in the pseudo-time-marching procedure:
P̂DWþ ĈW ¼ 0 ) DW ¼ �P̂
�1
ĈW: ð54Þ
The Fourier matrix Iðhx; hyÞ is then given by
I hx; hy
� �

¼ �CFL � P̂ hx; hy
� ��1

Ĉ hx; hy
� �

: ð55Þ
Fig. 1. 2D cell-centered mesh.
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The Fourier symbol is defined as the eigenvalues of the Fourier matrix. As the pseudo-time stepping is cou-

pled to a fourth-order Runge–Kutta method in the integration algorithm, the eigenvalues to be determined

are:
k hx;hy
� �

¼ eigenvalues ��I þ a4 �I hx;hy
� �

� ��I þ a3 �I hx;hy
� �

� ��I þ a2 �I hx;hy
� �

� ��I þ a1 �I hx;hy
� �� �� �� �� �

ð56Þ
with a1 = 1/4, a2 = 1/3, a3 = 1/2, and a4 = 1.

The amplification factor is defined as the maximum absolute value of the eigenvalues determined by Eq.

(56).

The expressions for P̂ in Eqs. (54) and (55) depend on the time-stepping method that is used and are

given below. The expression for Ĉ in Eqs. (54) and (55) is given by
Ĉ ¼ Âþ B̂þ DR þ GR; ð57Þ

where Â contains in the x direction, respectively, the convective term Âc, the acoustic term Âa, the diffusion

term Âv, and the artificial dissipation term Âd, and B̂ contains the corresponding terms in the y direction:
Â ¼ Âc þ Âa þ Âv þ Âd; ð58Þ

B̂ ¼ B̂c þ B̂a þ B̂v þ B̂d; ð59Þ

DR and GR represent the contribution from the drag and gravity source terms.

For the formulation of the different terms in Eqs. (57)–(59), reference is made to Appendix B.

For the semi-implicit point solver, P
_

is equal to C
_

P , with
P
_

¼ C
_

P ¼ C
Ds

þ Ac þ Bc þ Aa þ Ba þ 2 Av þ Bvð Þ þ 2 Ad þ Bdð Þ þ DL þ GL: ð60Þ
For the semi-implicit plane solver, P
_

is given by
P
_

¼ C
_

L þ B
_

c þ B
_

a þ B
_

v þ B
_

d þ DL þ GL ð61Þ

with C

_

L:
C
_

L ¼ C
Ds

þ Ac þ Aa þ 2Av þ 2Ad: ð62Þ
Source terms can be included in an explicit, partially implicit, or fully implicit way. The corresponding

expressions for DL and GL are given in Appendix A.

For the Fourier analysis, flow aligned with the x direction, i.e., the direction of the largest mesh spacing,

is investigated. In a riser simulation, this would correspond to the vertical direction. Except when otherwise
specified, the solids volume fraction is 0.05 and the gas–solid slip is 1%. In the viscous turbulent cases, the

gas phase turbulent kinetic energy k is 6.0 J kg�1, the gas phase turbulence dissipation e is 20.0 m2 s�3 and

the granular temperature H is given a value of 3.5 J kg�1.
5. 3D simulation test case

The stability results are compared with the convergence behaviour of 3D simulations of developing flow

in a riser of 10 cm diameter and 1 m height (Fig. 2, left). By using a large physical time step (>5000 s), a

steady-state solution is calculated. With respect to numerical stability, steady-state simulations are more

demanding than time dependent simulations, in particular for multi-phase flows.
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Fig. 2. Geometrical configuration used for the 3D simulations.
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Gas and solids are fed over the entire bottom section and a straight top outlet is used (Fig. 2, left). The
solid particles have a diameter of 60 lm and a density of 1550.0 kg m�3 (FCC catalyst). Elastic particle–

particle collisions are assumed, i.e., the restitution coefficient for particle–particle collisions [4,15] is one.

The inlet solids volume fraction is 15.7%. The average gas phase inlet velocity is 12.0 m s�1 and a fully

developed turbulent inlet velocity profile is imposed. The inlet gas phase turbulent intensity is taken 5%.

The solid phase is homogeneously distributed at an inlet velocity of 4.0 m s�1 and the inlet granular tem-

perature is 2.4 m2 s�2. The pressure is imposed at the outlet. The simulation conditions are summarized in

Table 2 (left).

The computational mesh consists of horizontal layers which are Cartesian-radial block structured [3,4].
For the test case simulations, 73 nodes are distributed in a uniform way in each horizontal layer. Thirteen

horizontal layers are distributed in a uniform way along the axis of the riser. In total, the computational
Table 2

Simulation conditions for the 3D riser simulations

Property Value

Test case Experimental validation case (side solids inlet)

uin
D E

½m s�1� 12.0 5.31

vin ½m s�1� 4.0 (0, �1.4, �0.9)

Gs [kg m
�2 s�1] 975.0 3

eins ½=� 1.572e�1 5.6e�3

Hin [m2 s�2] 2.4 0.26

qsp [kg m�3] 1550.0 1550.0

dp [lm] 60.0 77.0

e 1.0

ewall 0.9

/ 0.5
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mesh consists of 949 nodes. A grid independency study and the effect of grid refinement on the convergence

behaviour of the simultaneous solution algorithms is presented further in this paper.
6. Results and discussion

Different flow situations are analyzed and a comparison is made between the results obtained with the

different integration techniques. The figures show the computed eigenvalues or the Fourier symbol (Eq.

(56)) in the complex plane for hx 2 [0,2p] with steps of Dhx = p/20 and for hy = 0, p/2, p, and 3p/2. The sta-
bility domain of the fourth-order Runge–Kutta method, as combined in the integration scheme with

pseudo-time stepping, together with the eigenvalues or the Fourier symbol are shown in the left panel of

the figures. The amplification factors for the algorithm are shown in the right panel of the figures. For each

(hx,hy) combination, the maximum modulus of the eigenvalues of the amplification matrix is shown. All
Fourier symbols and stability results are computed with a CFL-number equal to 1.0. Standard, a plane sol-

ver is investigated, but the stability of point and plane solver are compared as well. For the point solver, the

pseudo-time step is calculated via Eq. (37), whereas for the plane solver Eq. (38) is applied.

Unless otherwise specified, local preconditioning is applied, artificial dissipation is added with dad = 0.5

and the source terms are treated fully implicit.

For the 3D test case riser simulations, convergence plots are shown. The convergence behaviour is quan-

tified for each of the equations by determining, over all nodes, the maximum of the residual of the balance

over the control volumes.

6.1. Influence of the numerical techniques

6.1.1. Preconditioning

Fig. 3 investigates the role of preconditioning on the stability of the simultaneous solution algorithms.

The grid aspect ratio gar is equal to 1.0. Fig. 4 shows the corresponding convergence plots for the 3D test

case riser simulation (Table 2, left and Fig. 2, left) using a CFL number equal to 1.0.

In case no preconditioning is applied, the simultaneous solution algorithms are stable, but damping is
very poor and as a result convergence is slow, especially for the gas phase mass and total energy equations

which play an important role in preconditioning. When applying preconditioning, on the other hand, the

damping characteristics of the simultaneous solution algorithms are much improved and convergence is

seen to be fast and exponential for all equations.

As is seen in the amplification factors, strong coupling in the flow direction is obtained using precondi-

tioning: for any hy, good damping is assured in the hx direction, in particular when hx approaches p (Fig. 3,

bottom right). The strong coupling in the flow direction is a consequence of the preconditioning, which

rescales the eigenvalues in such a way that, in the flow direction, they all become of the same order of
magnitude.

In the investigated case of flow aligned with the x direction, for hx = 0, the amplification factor is equal

to 1. This implies a loss of coupling for the corresponding eigenvector combination of the variables. This is

often considered to be the reason for slow convergence in aligned flow. However, computations by Vier-

endeels et al. [32] show that this is not correct. Good performance in aligned cases results from the role

of the boundary conditions. When Dirichlet boundary conditions are used, at the outlet for the pressure

and at the inlet for the other variables, the strong coupling of the variables in the flow direction eliminates

the unsmoothed eigenvector combination. This effect is not visible in the Fourier analysis, which applies
periodic boundaries.

Remark that in aligned flow, the eigenvalues in the normal direction still have a different order of mag-

nitude. The stiffness in the normal direction is largely removed by using a plane-implicit solver [32]. The
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latter also guarantees convergence behaviour independent of the grid aspect ratio, as illustrated further in

this paper.

It was observed that the convergence behaviour strongly depends on the correct scaling of the precon-

ditioner. The latter requires the knowledge of the eigenvalues of the set of partial differential equations (1)–

(10) (Table 1) describing gas–solid flow, in particular the mixture speed of sound. The preconditioner (Eqs.
(14)–(19)) is to be scaled according to the model mixture speed of sound.

Fig. 5 shows for the 3D test case riser simulation (Table 2, left and Fig. 2, left) the calculated solids vol-

ume fraction profile (Fig. 5, left), the axial solids velocity profile (Fig. 5, middle), and the granular temper-

ature profile (Fig. 5, right) in an axial cross section of the riser. Typically a core–annulus flow pattern

develops [4,12,27]. As seen from Fig. 5 (middle), showing the axial solids velocity profiles, the acceleration

zone reaches beyond the simulated first meter of the riser. This explains why the solids volume fraction (Fig.

5, left) is overall higher than the expected average value of 5% for the fully developed zone of the riser, cor-

responding with the imposed inlet conditions (Table 2, left). In the bottom of the riser, there is an initial
zone of about 10 cm where almost no axial acceleration of the particles is seen calculated. In this zone,

the radial motion is initialized. The latter is a result of the granular temperature profile that develops

(Fig. 5, right). The granular temperature in the bottom region is seen to be much higher in the core than



Fig. 4. Impact of preconditioning. Convergence plots for 3D test case riser simulations (Table 2, left; Fig. 2, left): gar = 10, CFL = 1.0.

Integration algorithm: plane solver, artificial dissipation dad = 0.5, implicit treatment of source terms.
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near the solid wall. This granular temperature profile is at the origin of the radial segregation of the par-

ticles and of the core–annulus flow pattern that develops. Axial acceleration of the particles starts at an

elevation of about 10 cm, where a core–annulus flow pattern has developed, and is almost linear with height

in most of the acceleration zone (Fig. 5, middle).
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Fig. 5. Simulation results of the 3D test case riser simulation (Table 2, left; Fig. 2, left).
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6.1.2. Artificial dissipation

Fig. 6 investigates the effect of artificial dissipation on the numerical stability of the integration scheme.

The grid aspect ratio gar is equal to 1.0.

If no artificial dissipation is added, the damping characteristics of the numerical scheme are poor, in par-

ticular for hx approaching p (Fig. 6, top). This is due to the central discretization of the pressure terms (Eq.

(25)) in the low-Mach AUSM scheme, resulting in poor pressure–velocity coupling. The scheme is stable

because of the fourth order Runge–Kutta stepping.

Artificial dissipation, as described by Eq. (26), was gradually added by modifying the artificial dissipa-
tion parameter dad. Addition of a small amount of artificial dissipation already results in improved damp-

ing, especially for hx approaching p. The optimal value for dad was found to be 0.5. A higher value of dad
does not result in further improvement of the damping.

The 3D test case riser simulation shows very poor convergence behaviour if no artificial dissipation is

added to the scheme (not shown). Furthermore, wiggles are observed in the calculated flow field.

Provided that artificial dissipation is added, the low-Mach AUSM scheme behaves well and wiggles are

dissipated.

6.1.3. The grid aspect ratio: point versus plane solver

Fig. 7 compares the stability characteristics of the semi-implicit point solver and the semi-implicit plane

solver for grid aspect ratios gar equal to 2.0 and 10.0.
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es = 5 · 10�2, gar = 10.0, k = 6.0, e = 20.0,H = 3.5, slip = 1%, CFL = 1.0. Integration algorithm: plane solver, preconditioning, implicit

treatment of source terms. Left: Fourier symbols in the complex plane; right: amplification factor.
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For a grid aspect ratio gar of 1.0, the convergence behaviour of the point and plane solver is very similar

(not shown). For higher grid aspect ratios, the pseudo-time step is reduced when using the point solver be-

cause of the stability restriction due to the acoustic terms in the y direction (Eq. (37)). For a grid aspect

ratio of 2.0 (Fig. 7, top half), damping is slowing down with the point solver. For a grid aspect ratio of
7876

0.8170.8179

0.90 90
0.9393

0.939 3
0

.

9

6

9

7



Real part of Fourier symbol

lob
my

S
reiruo

Ffotrap
yraniga

mI

-3 -2 -1 0 1
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1
-3

-2

-1

0

1

2

3

0.8073
0 .80 73

0.83 1 4
0.83 14

5558.0

0.8 5 55
0.85 55

0
6978 .

0.87 96
0.8796

0
6309 .

0 .9 036

6309.0

0 .927 7
0.9 27 7

0
8159.

0.9 5 18
0.9518

0.9759
0 . 975 9

0

π

π

gar = 2.0: point solver 

Real part of Fourier symbol

lob
my

S
reiruo

Ffotrap
yraniga

mI

-3 -2 -1 0 1
-3

-2

-1

0

1

2

3



Fig. 8. Point versus plane solver at high grid aspect ratios. Convergence plots for 3D test case riser simulations (Table 2, left; Fig. 2,

left): gar = 10.0: CFL = 2.0. Integration algorithm: artificial dissipation dad = 0.5, implicit treatment of source terms.
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10.0 (Fig. 7, bottom half) or higher, the amplification factor is around unity in the whole (hx, hy) plane. If
the plane solver is used with planes in the direction of the smallest grid size (y direction), the influence of the

grid aspect ratio disappears completely. With the plane solver, convergence for higher grid aspect ratios is

comparable to the case with a grid aspect ratio equal to unity.

The results from the Fourier analysis are confirmed by the 3D test case riser simulations, with a grid

aspect ratio of about 10. Fig. 8 shows the convergence plots for both the point and the plane solver with



a CFL number of 2.0. Both the point and the plane solver converge exponentially, but the point solver con-

verges much slower than the plane solver. Remark by comparing the convergence plots of the precondi-

tioned plane solver in Fig. 4 (bottom), using a CFL number of 1.0, and Fig. 8 (bottom), using a CFL

number of 2.0, that an increase of the CFL number indeed quasi proportionally increases the convergence
speed. With a CFL number of 1.0, about 5800 iterations are required to reach convergence, whereas with a

CFL number of 2.0 only 2800 iterations are required. Theoretically, the fourth-order Runge–Kutta step-

ping is stable up to CFL ¼ 2
ffiffiffi
2

p
¼ 2:8.

Figs. 8 and 9 further investigate the grid aspect ratio independency of the convergence behaviour for the

plane solver. With a grid aspect ratio of 10.0 (Fig. 8), convergence is seen to be equally fast as with a grid

aspect ratio of 1.0 (Fig. 9), as predicted by the Fourier analysis.

It should be noted that an explicit approach was found to be unstable (not shown). Furthermore, a semi-

implicit (point or plane wise) approach is required for as well the convective, the acoustic as the viscous
terms to obtain a stable simultaneous solution algorithm (not shown). This is in contrast with single phase

flows for which a semi-implicit approach of the convective terms was found not to be essential [32].

6.1.4. The viscous terms

The influence of viscous terms on the stability of the integration algorithm is investigated in Fig. 10.

First, inviscid flow is investigated (Fig. 10, top), i.e., all viscous terms in the equations are neglected.

The grid aspect ratio gar is equal to 1.0.

Compared with the viscous flow case (Fig. 3, bottom), the damping obtained for the inviscid flow case is
equal. The integration techniques applied for the convective and acoustic terms, i.e., the semi-implicit ap-

proach in combination with the use of artificial dissipation and preconditioning, minimize the stabilizing

effect from the viscous terms.

Next, the stability of the integration algorithm in a viscous stagnation zone is investigated by considering

a zero value for the convective velocities (Fig. 10, middle). Remarkably, even for a small solids volume frac-

tion, the numerical scheme is unstable. This could be due to the fact that stagnant gas–solid flow in a grav-

itational field is unphysical. To investigate this further, the stability analysis of the viscous stagnation zone
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is also performed in a gravitationless field (Fig. 10, bottom). In this case, the numerical scheme is seen to be
stable. Good damping is predicted, although for p-waves the damping remains less good.

6.1.5. The treatment of the source terms

In Fig. 11, the influence of the treatment of the drag source terms on the numerical stability of the simul-

taneous solution algorithms is investigated. The results are analogous for the gravity source terms. Viscous

turbulent flow aligned with the x direction is investigated with a grid aspect ratio gar equal to 1.0.
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Fig. 12. Influence of the solids volume fraction. Stability results for turbulent viscous flow aligned with the x direction. Conditions:

gar = 10.0, k = 6.0, e = 20.0, H = 3.5, slip = 1%, CFL = 1.0. Integration algorithm: plane solver, artificial dissipation dad = 0.5,

preconditioning, implicit treatment of source terms. Left: Fourier symbols in the complex plane; right: amplification factor.
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First, the stability of the simultaneous solution algorithms is investigated in the absence of drag source

terms (Fig. 11, top). The simultaneous solution algorithms are seen to be unstable in this case, showing
some regions with damping factors larger than unity. A possible reason for this, is that in the absence of

a drag term, the gas–solid flow model that is used (Table 1) is unphysical by absence of a driving force

for the solid phase.



- 3 - 2 - 1

- 3

- 2

- 1 0

1

2

3

7 7 2

6 . 0

7 7

2 6 . 0

0

.

6

7

4

0

.

6 7

4

3

3 4 7 6 . 00

.

7

2

0

8

8 0 2 7 . 03 7 6 7 . 03 7 6 7 . 09 3 1 8 . 09 3 1 8 . 03 1 8 . 0
9

0 4 0 6 8 .0

.

8

6 0

4

4 0 6 8 . 00

.

9

0

6 9

9 6 0 9 . 09 6 0 9 . 00

.

9

5

3

5

0

.

9

5

3

5

0π π 1 %  s l i p  R ea l pa rtl o bmy Sreiru oFf o trapyraniga m I -3-2-101-3 -2 -1 0123

J. De Wilde et al. / Journal of Computational Physics 207 (2005) 309–353 335
Next, an explicit, partially implicit and fully implicit treatment of the source terms is tried. With an ex-

plicit treatment of the source terms (Fig. 11, second from top), damping factors are seen to be much larger

than unity in the whole (hx,hy) plane. De Wilde et al. [4] have previously treated the negative part of the

source terms implicitly and the positive part of the source terms explicitly. The stability plot for such an

approach (Fig. 11, third from top) reveals that, although the scheme is stable, damping is very poor and
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Table 3

Grid independency study: calc
73

·13 =949 nodes 73

·69 =
convergence is slow. This was indeed observed in previous work [4]. To obtain good damping, a fully im-

plicit treatment of the drag and gravity source terms is necessary (Fig. 11, bottom). The 3D test case riser

simulations confirm that convergence with a fully implicit treatment of these source terms is satisfying (Fig.

4, bottom and Figs. 8 and 9).

As mentioned before, the possibility of a fully implicit treatment of the source terms is a particular

advantage of the simultaneous solution algorithms for multi-phase flows.
6.2. Influence of the simulation conditions

In the next paragraphs, the influence of the solids volume fraction and the gas–solid slip velocity, two

important conditions in the simulation of gas–solid flows, is investigated for the simultaneous solution

algorithms found optimal, i.e., applying preconditioning, artificial dissipation and a fully implicit treatment

of the source terms.
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6.2.1. The solids volume fraction

Fig. 12 illustrates the numerical stability of the simultaneous solution algorithms for varying solids vol-

ume fraction. The grid aspect ratio gar is equal to 1.0.

Provided that the preconditioner (Eqs. (14)–(19)) is scaled properly for the model that is used, i.e.,

according to the mixture speed of sound hold by the model, not much effect of the solids volume
fraction on the amplification factors (Fig. 12, right) of the simultaneous solution algorithms is ob-

served. Both for low and high solids volume fractions, the simultaneous solution algorithms provide

good damping. However, from the Fourier symbol (Fig. 12, left) it is seen that with increasing solids

volume fraction, the border of the stability region of the fourth-order Runge–Kutta scheme

is approached. This could indicate that a further improvement of the preconditioner can still be

achieved.
Fig. 15. Grid independency study. 3D validation case riser simulations (Table 2, right; Fig. 2, right): CFL = 1.0. Solids volume fraction

profiles in an axial cross section through the side solids inlet and in a horizontal cross section at height of the side solids inlet (0.5 m

height in the riser). Integration algorithm: plane solver, artificial dissipation dad = 0.5, implicit treatment of source terms. Cases shown:

reference case: 13 planes of 73 nodes; axial mesh refinement: 69 planes of 73 nodes; mesh refinement both axial and in the plane: 69

planes of 177 nodes.
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6.2.2. The slip velocity

Fig. 13 investigates the effect of the value of the gas–solid slip velocity on the numerical stability of the

simultaneous solution algorithms. The grid aspect ratio gar is equal to 1.0.

With increasing gas–solid slip, the simultaneous solution algorithms remain stable and the damping is
seen to get only slightly affected. In the 3D test case riser simulations, no markable effect on the convergence

of increased gas–solid slip in the bottom acceleration zone of the riser was observed.
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7. Experimental validation and grid independency study

The gas–solid flow model (see paragraph on gas–solid flow model and Table 1) and the solution algo-

rithm presented (see paragraph on Integration scheme) are validated using experimental data of the bottom

section of a cold-flow riser with a side solids inlet configuration. The latter induces a complex flow pattern

with strong gradients in the flow field variables, e.g. the solids volume fraction or the velocities. Hence, the

bottom acceleration zone of the riser in the vicinity of the side solids inlet is particularly suited for the val-

idation of gas–solid flow models and solution algorithms.
In combination with the experimental validation, a grid independency study of the simulation results is

carried out. Of particular interest with respect to the solution algorithm presented, the grid independency

study allows to investigate the effect of mesh refinement in the different directions on the convergence

behaviour and the memory and calculation time requirements.
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Fig. 18. Grid independency study. 3D validation case riser simulations (Table 2, right; Fig. 2, right): CFL = 1.0. Granular temperature

profiles in an axial cross section through the side solids inlet and in a horizontal cross section at height of the side solids inlet (0.5 m

height in the riser). Integration algorithm: plane solver, artificial dissipation dad = 0.5, implicit treatment of source terms. Cases shown:

reference case: 13 planes of 73 nodes; axial mesh refinement: 69 planes of 73 nodes; mesh refinement both axial and in the plane: 69

planes of 177 nodes.
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7.1. Side solids inlet flow case

Fig. 2 (right) shows a schematic representation of the bottom section of the experimental cold-flow pilot

scale riser. The riser has a diameter of 0.1 m. The side solids inlet has a diameter of 0.08 m and is positioned
at about 0.5 m height in the riser, making a 35� angle with the vertical z-axis. A 3D laser Doppler anemom-

eter (LDA) is used to measure the local mean and fluctuating particle velocities under dilute phase condi-

tions. Details on the complete experimental set-up can be found in [31].

The experimental and simulation conditions are shown in Table 2 (right). The axial gas inlet velocity

was 5.31 m s�1. The solids have a mean particle diameter of 77 lm and a density of 1550 kg m�3. The

solids flux is mechanically controlled by means of a diaphragm valve. The solids flux in the riser was

3 kg m�2 s�1.
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Fig. 19. Grid independency study: quantitative comparison with experimental results. 3D validation case riser simulations (Table 2,

right; Fig. 2, right): CFL = 1.0. Axial solids velocity in a cross section through the side solids inlet: (a) at height of the side solids inlet

(0.5 m height in the riser); (b) 0.5 m downstream of the side solids inlet (1.0 m height in the riser). Experimental data of Van engelandt

et al. [31]. Integration algorithm: plane solver, artificial dissipation dad = 0.5, implicit treatment of source terms. Cases shown: reference

case: 13 planes of 73 nodes; axial mesh refinement: 69 planes of 73 nodes; mesh refinement both axial and in the plane: 69 planes of 177

nodes.
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The simulations are limited to the riser part of the set-up, i.e., the flow in the side solids inlet chan-

nel is not calculated. The computational mesh used for the riser simulations approaches the side solids

inlet boundary as a rectangle of equal inlet surface area as the experimental side solids inlet. The value

of the solids velocity components at the side solids inlet boundary required for the simulations (Table 2,
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Fig. 20. Grid independency study: quantitative comparison with experimental results. 3D validation case riser simulations (Table 2,

right; Fig. 2, right): CFL = 1.0. Axial solids velocity in a cross section facing the side solids inlet at height of the side solids inlet (0.5 m

height in the riser). Experimental data of Van engelandt et al. [31]. Integration algorithm: plane solver, artificial dissipation dad = 0.5,

implicit treatment of source terms. Cases shown: reference case: 13 planes of 73 nodes; axial mesh refinement: 69 planes of 73 nodes;

mesh refinement both axial and in the plane: 69 planes of 177 nodes.
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right), were measured experimentally. A problem, however, arises with the value of the solids volume

fraction to be imposed at the side solids inlet boundary. Visual observations and estimates of the solids

volume fraction obtained from the experimental data rate show a non-uniform distribution of the solids

over the side solids inlet boundary cross section. As a result of the gravitational force, solids accumu-

late in the lower section of the side solids inlet channel. In general, less than one third of the side solids

inlet cross sectional surface area is used by the solids. In some cases, the solids are observed to enter

the riser as a dense solids jet, using only a fraction of the side solids inlet cross sectional surface area.

To account for solids accumulation at the side solids inlet boundary in the simulations while keeping
the solids flux in the riser at its set-value, the side solids inlet height was reduced to about one third of

its design value and the solids fraction at the side solids inlet boundary was increased by a factor three

to 0.0056 (Table 2, right). Hence, although the experimental set-up is described as closely as possible, a

certain incertainty exists due to the lack of data on the solids distribution at the boundary of the side

solids inlet with the riser.
7.2. Effect of grid refinement on the convergence behaviour of the solution algorithm

Fig. 14 shows the convergence behaviour obtained with the horizontal plane solver using three different

grid resolutions. The residual on the solids mass balance is shown but the behaviour for the other equations

is similar (see, e.g., Figs. 4, 8 and 9).

With the reference coarse grid, 13 horizontal planes are distributed along the vertical axis of the riser and

73 nodes are distributed in each horizontal plane. Using a CFL-number of 1.0, about 5500 iterations are
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required to reach convergence. The residual on the balances have dropped by 11 orders of magnitude for all

equations.

Refining the grid in the axial direction, i.e., increasing the number of horizontal planes distributed along

the vertical axis of the riser from 13 to 69, about 29000 iterations are required to reach convergence (Fig.

14). As expected with a plane solver, the number of iterations required for convergence increases linearly
with the number of planes.

Further refinement of the grid in the plane-wise directions, increasing the number of nodes per hori-

zontal plane from 73 to 177, does not alter the number of iterations required for convergence (Fig. 14).

As expected with a plane solver, the number of iterations required for convergence is independent of the

number of nodes per horizontal plane. On the other hand, because the calculation time per horizontal

plane increases with the number of nodes in the horizontal plane, the calculation time per iteration

and the overall calculation time increase as a result of grid refinement in the plane-wise directions. Table

3 shows the calculation time and memory requirements for the three grids used. As expected for the plane
solver, the calculation time per iteration increases linearly with the number of planes. Because the num-

ber of iterations required for convergence increases also linearly with the number of planes, the overall

calculation time increases with the square of the number of planes. The calculation time per iteration

increases more than proportional with the number of nodes in the plane-wise directions, but less than

proportional with the square of the number of nodes in the plane-wise directions. The calculation time

of the sparse direct solver used for the calculation of each horizontal plane (Eq. (39)) is proportional with

the square of the bandwidth of the equation set Eq. (39). Intelligent mapping of the nodes in the plane-

wise directions can reduce the bandwidth of the equation set Eq. (39) significantly.
The memory requirement increases somewhat less than proportional with the number of grid nodes,

independent of the direction of the grid refinement. This is in accordance with the expectations.
7.3. Effect of the grid resolution on the simulation results

Figs. 15–18 show respectively the calculated profiles of the solids volume fraction, the solids velocity

vector, the axial gas phase velocity and the granular temperature in an axial cross section of the riser

through the side solids inlet and, for the contour plots, in a horizontal cross section at height of the
side solids inlet (0.5 m height in the riser). Fig. 17 focuses on the immediate vicinity of the side solids

inlet.

As seen from Fig. 15, the solids are quickly radially distributed over the entire cross section of the riser.

Fig. 17 shows that the gas phase bypasses the dense zone near the side solids inlet, mainly via the side oppo-

site the side solids inlet, resulting in downflow of solids just below the side solids inlet boundary (Fig. 16).

Bypassing also occurs aside of the side solids inlet (see further Fig. 20), in the direction perpendicular to the

axial cross section shown in Figs. 15–18.

Fig. 18 shows that the granular temperature in the vicinity of the side solids inlet is low and increases as
the solid particles are entrained. This is qualitatively in agreement with the experimental observations of

[31].

With respect to grid independency of the simulation results, Figs. 15–18 show that increasing the

number of horizontal planes from 13 to 69 and, hence, the number of grid nodes from 949 to 5074,

quantitatively alters the calculated flow field. Further increasing the number of grid nodes from 5074

to 12213 by increasing the number of nodes per plane from 73 to 177, hardly alters the calculated flow

field (Figs. 15–18). Hence, the grid is sufficiently refined for the simulation results to become grid inde-

pendent. In such case, the simulation results are only determined by the gas–solid flow model (see par-
agraph on gas–solid flow model), not by numerical issues. The latter is important with respect to the

experimental validation, discussed in the next paragraph.
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7.4. Experimental validation

Figs. 19 and 20 compare simulated and experimentally measured axial solids velocities. Fig. 19

shows the axial solids velocities in an axial cross section through the side solids inlet (positioned at

the left in Fig. 19(a)) at height of the side solids inlet (0.5 m height in the riser) (Fig. 19(a)) and
0.5 m downstream of the side solids inlet (1.0 m height in the riser) (Fig. 19(b)). At height of the side

solids inlet (Fig. 19(a)), the experimental and simulated values correspond well. In this section of the

riser, the influence of the solid wall on the flow field is limited and the gas–solid flow model (see par-

agraph on gas–solid flow model and Table 1) is seen to perform well. At 1.0 m height in the riser, 0.5 m

downstream of the side solids inlet, both the experimental observations and the simulations show that

the inlet effects have completely dissipated. In the core of the riser, the experimental and simulated

values correspond reasonably well. Near the solid wall, on the other hand, the gas–solid flow model

underestimates the axial solids velocities. Qualitatively, both the experimental observations and the
simulations show that the axial solids velocity profile flattens out when approaching the solid

wall.

Remark that, as demonstrated by the grid independency study in the previous paragraph, the devia-

tion between the experimental and simulated values is not related to the simultaneous solution algorithm

investigated but is related to the gas–solid flow model (see paragraph on gas–solid flow model). A pos-

sible origin of the deviation between the experimental and simulated values near the solid wall is found

in the solid wall boundary conditions that are used, both for the gas and the solid phase (see paragraph

on gas–solid flow model). The standard wall functions used for the gas phase need to be modified to
account for gas–solid interactions and probably overestimate the wall shear stress. For the solid phase,

the boundary conditions derived by Sinclair and Jackson [29] and adopted in this work do not account

for solid particles rolling along the solid wall and, hence, also probably overestimate the wall shear

stress.

Fig. 20 compares the experimentally measured and simulated axial solids velocity profile in an axial cross

section of the riser facing the side solids inlet at height of the side solids inlet (0.5 m height in the riser) and

confirms a possible role of the solid wall boundary conditions. Qualitatively, the simulations predict well

bypassing aside of the side solids inlet, resulting in a decrease of the axial solids velocity in the center of
the riser and off-center maxima in the axial solids velocity profile. In the core of the riser, the axial solids

velocity is reasonably well predicted, taking into consideration the uncertainty on the values of the solids

volume fraction at the side solids inlet boundary and the actual side solids inlet boundary surface area (see

paragraph on Side solids inlet flow case). Near the solid wall, however, the axial solids velocity is again

underestimated, although the deviation is more pronounced at the left than at the right of the side solids

inlet. Remark that the asymmetry in the experimental observations in Fig. 20 is probably due to an asym-

metry, i.e. a bend, in the gas feeding channel to the riser in the experimental set-up, not accounted for in the

simulations.
Summarizing, the experimental validation and the grid independency study show that the simultaneous

solution algorithm for the Eulerian–Eulerian gas–solid flow models presented in this paper performs well.

The gas–solid flow model, on the other hand, in particular the solid wall boundary conditions, needs to be

improved.
8. Conclusions

Fourier analysis of simultaneous solution algorithms for Eulerian–Eulerian gas–solid flow models

shows that these integration algorithms can provide good damping independent of the solids volume
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fraction and the gas–solid slip velocity. Whereas the use of a semi-implicit point solver is restricted to

low grid aspect ratios, the semi-implicit plane solver is seen to perform well, independently of the grid

aspect ratio. Preconditioning is shown to be essential to obtain good damping. Proper scaling of the

preconditioner, accounting for the model mixture speed of sound, is necessary to obtain damping inde-

pendent of the solids volume fraction. The low-Mach AUSM scheme imposes the introduction of arti-
ficial dissipation to obtain good damping, due to the central pressure discretization. To guarantee

numerical stability, a fully implicit treatment of the drag and gravity source terms is required. In this

case, the stability of the integration scheme is not much affected by the presence of these source terms.

The possibility of a fully implicit approach for the source terms is a particular advantage of the simul-

taneous solution algorithms.

Good agreement between the stability predictions from the 2D Fourier analysis and the convergence

behaviour of 3D riser simulations is found.

A grid independency study is carried out. The grid was sufficiently refined for the solutions to become
grid independent. For the plane solver, the number of iterations required for convergence increases linearly

with the number of planes and is independent of the number of nodes per plane. The calculation time per

iteration, on the other hand, increases linearly with the number of planes but increases more than propor-

tional with the number of nodes per plane.

Experimental validation of simulations of the bottom zone of a riser with a side solids inlet shows that

the Eulerian–Eulerian gas–solid flow models, in particular the solid wall boundary conditions, need to be

further developed.
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Appendix A

Introducing:
Fgx ¼ egqgux; ðAI:1Þ

Fgy ¼ egqguy ; ðAI:2Þ

Fsx ¼ esqspvx; ðAI:3Þ

Fsy ¼ esqspvy ðAI:4Þ
and making use of the discretization given by Eqs. (23) and (24), matrix Ac containing the terms in the

x-direction for the convective fluxes can be written as:
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Ac ¼

qspvx dx
�1 0 0 0 0

�qgux dx
�1 FgxP

�1 dx�1 0 0 0

qspvxvx dx
�1 0 Fsx dx�1 0 0

qspvxvy dx
�1 0 0 Fsx dx�1 0

�qguxux dx
�1 FgxP

�1ux dx�1 0 0 Fgx dx
�1

�qguxuy dx
�1 FgyP

�1ux dx�1 0 0 0

�qguxEg dx�1 FgxP
�1Eg dx�1 0 0 egqguxux dx

�1

3 � 2�1qspvxH � dx�1 0 0 0 0

�qguxk � dx�1 FgxP
�1k � dx�1 0 0 0

�qguxe � dx�1 FgxP
�1e � dx�1 0 0 0

2
666666666666666666666666666666664

0 0 0 0 0

0 �FgxT
�1 dx�1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 �FgxT
�1ux dx�1 0 0 0

Fgx dx
�1 �FgyT

�1ux dx�1 0 0 0

Fgxuy dx
�1 Fgx � dx�1 � CV kg

� EgT�1
� �

0 Fgx dx
�1 0

0 0 3 � 2�1Fsx dx�1 0 0

0 �FgxT
�1k � dx�1 0 Fgx dx

�1 0

0 �FgxT
�1e � dx�1 0 0 Fgx dx

�1

3
777777777777777777777777777777775

: ðAI:5Þ
The matrix Bc containing the corresponding terms in the y-direction is derived analogously.

Due to the central discretization (Eq. (25)), the matrices Aa and Ba for the acoustic fluxes are given

by
Aa ¼ ½O�; ðAI:6Þ

Ba ¼ ½O�: ðAI:7Þ
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Artificial dissipation according to Eq. (26) is added to all the gas phase equations, resulting in the following

formulation for Ad containing the terms in the x-direction:
Ad ¼

0 0 0 0 0 0 0 0 0 0

0 dad=bxð Þ � dx�1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 dad=bxð Þ � dx�1 � ux 0 0 0 0 0 0 0 0

0 dad=bxð Þ � dx�1 � uy 0 0 0 0 0 0 0 0

0 dad=bxð Þ � dx�1 � H g 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 dad=bxð Þ � dx�1 � k 0 0 0 0 0 0 0 0

0 dad=bxð Þ � dx�1 � e 0 0 0 0 0 0 0 0

2
6666666666666666664

3
7777777777777777775

: ðAI:8Þ
The matrix Bd containing the corresponding terms in the y-direction is derived analogously.

Discretization of the viscous fluxes following a central scheme results in:
Av ¼

0 0 0 0 0

0 0 0 0 0

0 0 es � ns � 2ls3
�1

� �
þ 2esls

� �
� dx�2 0 0

0 0 0 esls dx
�2 0

0 0 0 0 eg � ng � 2ltot
g 3�1

� �
þ 2egltot

g

h i
� dx�2

0 0 0 0 0

0 0 0 0 eg � ng � 2ltot
g 3�1

� �
þ 2egltot

g

h i
� ux � dx�2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2
666666666666666666664

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

egltot
g dx�2 0 0 0 0

egltot
g � uy � dx�2 egk

tot
g dx�2 0 0 0

0 0 esjdx�2 0 0

0 0 0 egltot
g r�1

k dx�2 0

0 0 0 0 egltot
g r�1

e dx�2

3
77777777777777777775

: ðAI:9Þ
The matrix Bv containing the corresponding terms in the y-direction is derived analogously.
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An implicit treatment of the gravity source terms results in:
GL ¼

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

qspgx 0 0 0 0 0 0 0 0 0

qspgy 0 0 0 0 0 0 0 0 0

�qspgx 0 0 0 0 0 0 0 0 0

�qspgy 0 0 0 0 0 0 0 0 0

�qsp gxux þ gyuy
� �

0 0 0 �esqspgx �esqspgy 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

: ðAI:10Þ
In case only the negative part of the drag source term is treated implicitly, DL is given by
DL ¼

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 �b 0 0 0 0 0 0 0

0 0 0 �b 0 0 0 0 0 0

0 0 0 0 �b 0 0 0 0 0

0 0 0 0 0 �b 0 0 0 0

0 0 0 0 �bux �buy 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCA

: ðAI:11Þ
A fully implicit treatment results in
DL ¼

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 �b 0 b 0 0 0 0 0

0 0 0 �b 0 b 0 0 0 0

0 0 b 0 �b 0 0 0 0 0

0 0 0 b 0 �b 0 0 0 0

0 0 bvx bvy �bux �buy 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

: ðAI:12Þ
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Appendix B

Using functions ce() and up(), respectively, given by Eqs. (48) and (49), A
_

c hð Þ is derived as:
A
_

c hð Þ ¼

qspvx � up h; dxð Þ 0 esqsp � ce h; dxð Þ
�qgux � up h; dxð Þ FgxP

�1 � up h; dxð Þ 0

qspvxvx � up h; dxð Þ 0 Fsx � ce h; dxð Þ þ up h; dxð Þð Þ
qspvxvy � up h; dxð Þ 0 Fsy � ce h; dxð Þ
�qguxux � up h; dxð Þ FgxP

�1ux � up h; dxð Þ 0

�qguxuy � up h; dxð Þ FgyP
�1ux � up h; dxð Þ 0

�qguxEg � up h; dxð Þ FgxP
�1Eg � up h; dxð Þ 0

3 � 2�1qspvxH � up h; dxð Þ 0 3 � 2�1esqspH � ce h; dxð Þ
�qguxk � up h; dxð Þ FgxP

�1k � up h; dxð Þ 0

�qguxe � up h; dxð Þ FgxP
�1e � up h; dxð Þ 0

2
6666666666666666666664

0 0 0

0 egqg � ce h; dxð Þ 0

0 0 0

Fsx � up h; dxð Þ 0 0

0 Fgx � ce h; dxð Þ þ up h; dxð Þð Þ 0

0 Fgy � ce h; dxð Þ Fgx � up h; dxð Þ
0 egqg uxux � up h; dxð Þ þ Eg � ce h; dxð Þ

� �
Fgxuy � up h; dxð Þ

0 0 0

0 egqgk � ce h; dxð Þ 0

0 egqge � ce h; dxð Þ 0

0 0 0 0

�FgxT
�1 � up h; dxð Þ 0 0 0

0 0 0 0

0 0 0 0

�FgxT
�1ux � up h; dxð Þ 0 0 0

�FgyT
�1ux � up h; dxð Þ 0 0 0

Fgx � up h; dxð Þ � CV kg
� EgT�1

� �
0 Fgx � up h; dxð Þ 0

0 3 � 2�1Fsx � up h; dxð Þ 0 0

�FgxT
�1k � up h; dxð Þ 0 Fgx � up h; dxð Þ 0

�FgxT
�1e � up h; dxð Þ 0 0 Fgx � up h; dxð Þ

3
7777777777777777777775

;

ðAII:1Þ
where Fgx, Fgy, Fsx, and Fsy are given by Eqs. (AI.1)–(AI.4) (Appendix A). B
_

c hð Þ is derived analogously.
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For the acoustic part, the following matrix containing the terms in the x-direction is obtained:
A
_

a hð Þ ¼

0 0 0 0 0

0 0 0 0 0

qspHþ 2 2 1þ eð Þgrdfð ÞesqspH
� �

� ce h; dxð Þ 0 0 0 0

0 0 0 0 0

0 1þ 2 � 3�1qgk � P�1
� �

� ce h; dxð Þ 0 0 0

0 0 0 0 0

0 1þ 2 � 3�1qgk � P�1
� �

ux � ce h; dxð Þ 0 0 P þ 2 � 3�1qgk
� �

� ce h; dxð Þ

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2
666666666666666666666666664

0 0 0 0 0

0 0 0 0 0

0 0 1þ 2 1þ eð Þesgrdfð Þesqsp

� �
� ce h; dxð Þ 0 0

0 0 0 0 0

0 �2 � 3�1qgk � T�1 � ce h; dxð Þ 0 2 � 3�1qg � ce h; dxð Þ 0

0 0 0 0 0

0 �2 � 3�1qgk � T�1ux � ce h; dxð Þ 0 2 � 3�1qgux � ce h; dxð Þ 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3
777777777777777777777777775

ðAII:2Þ
B̂aðhÞ is derived analogously.

Artificial dissipation according to Eq. (26) is added to all gas phase equations, resulting in the following

formulation for A
_

d hð Þ:
A
_

d hð Þ ¼

0 0 0 0 0 0 0 0 0 0

0 dad=bxð Þ � vi h; dxð Þ � dx 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 dad=bxð Þ � vi h; dxð Þ � dx � ux 0 0 0 0 0 0 0 0

0 dad=bxð Þ � vi h; dxð Þ � dx � uy 0 0 0 0 0 0 0 0

0 dad=bxð Þ � vi h; dxð Þ � dx � H g 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 dad=bxð Þ � vi h; dxð Þ � dx � k 0 0 0 0 0 0 0 0

0 dad=bxð Þ � vi h; dxð Þ � dx � e 0 0 0 0 0 0 0 0

2
6666666666666666666666664

3
7777777777777777777777775

ðAII:3Þ
B̂d hð Þ is derived analogously.
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Using vi() given by Eq. (52), the viscous fluxes result in:
A
_

v hð Þ ¼

0 0 0 0 0

0 0 0 0 0

0 0 es � ns � 2ls3
�1

� �
þ 2esls

� �
� vi h; dxð Þ 0 0

0 0 0 esls � vi h; dxð Þ 0

0 0 0 0 eg � ng � 2ltot
g 3�1

� �
þ 2egltot

g

h i
� vi h; dxð Þ

0 0 0 0 0

0 0 0 0 eg � ng � 2ltot
g 3�1

� �
þ 2egltot

g

h i
� ux � vi h; dxð Þ

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2
6666666666666666664

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

egltot
g � vi h; dxð Þ 0 0 0 0

egltot
g � uy � vi h; dxð Þ egk

tot
g � vi h; dxð Þ 0 0 0

0 0 esj � vi h; dxð Þ 0 0

0 0 0 egltot
g r�1

k � vi h; dxð Þ 0

0 0 0 0 egltot
g r�1

e � vi h; dxð Þ

3
777777777777777775

ðAII:4Þ
B̂vðhÞ is derived analogously.

The part of the viscous fluxes related to non-neighbouring nodes results in the following contribution:
D
_

v h; hbð Þ ¼

0 0 0 0

0 0 0 0

0 0 0 es � ns � 2ls3
�1

� �
þ esls

� �
� vi2 h; hb; dx; dyð Þ

0 0 es � ns � 2ls3
�1

� �
þ esls

� �
� vi2 h; hb; dx; dyð Þ 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2
666666666666666664

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 eg � ng�2ltot
g 3�1

� �
þegltot

g

h i
�vi2 h;hb;dx;dyð Þ 0 0 0 0

eg � ng�2ltot
g 3�1

� �
þegltot

g

h i
�vi2 h;hb;dx;dyð Þ 0 0 0 0 0

eg � ng�2ltot
g 3�1

� �
þegltot

g

h i
�uy �vi2 h;hb;dx;dyð Þ eg � ng�2ltot

g 3�1
� �

þegltot
g

h i
�ux �vi2 h;hb;dx;dyð Þ 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3
7777777777777777777775

;

ðAII:5Þ

where vi2() is given by Eq. (53).
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The gravity source terms result in:
GR ¼

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

qspgx 0 0 0 0 0 0 0 0 0

qspgy 0 0 0 0 0 0 0 0 0

�qspgx 0 0 0 0 0 0 0 0 0

�qspgy 0 0 0 0 0 0 0 0 0

�qsp gxux þ gyuy
� �

0 0 0 �esqspgx �esqspgy 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

: ðAII:6Þ
The drag source terms, on the other hand, result in:
DR ¼

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 �b 0 b 0 0 0 0 0

0 0 0 �b 0 b 0 0 0 0

0 0 b 0 �b 0 0 0 0 0

0 0 0 b 0 �b 0 0 0 0

0 0 bvx bvy �bux �buy 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

: ðAII:7Þ
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